Nitrogen use efficiency (NUE_N) of dairy cows under intensive grazing

20 June, Cindy Klootwijk

R.L.G. Zom, A. Van den Pol-Van Dasselaar, C.E. Van Middelaar, G. Holshof and I.J.M. De Boer

Components of Amazing Grazing

Challenges intensive grazing vs NUE_N

Dutch dairy sector

- > cows per grazing area
- High demand for grazing
- \bullet Focus on improving NUE_N

- Limited knowledge on grass (N) intake
- High level of feed supplementation

Grazing systems for intensive grazing

- Higher grassland utilization
- More equal distribution of manure

Objective:

To test the effects of intensive grazing systems and dietary protein level on NUE_N at cow level

2 x 2 factorial design

RDP = rumen degradable protein

• Contrast of 500 g RDP cow⁻¹ day⁻¹

5 kg concentrates with sugar beet pulp (-50) or rapeseed meal (+50)

Dairy Campus, Leeuwarden (NL)

2 x 2 factorial design

- April October 2016 + 2017
- 8 ha: 7.5 cow per ha
- Daytime grazing

- 4 groups of 15 dairy cows (HF)
 - Before start: 38.8 kg FPCM cow⁻¹ day⁻¹
 - At start: 175 (115-247) days in lactation
 - 2.6 (1-7) lactations

Quantifying inputs and outputs

60 individual dairy cows

Subset: July + September 2016

Quantifying inputs and outputs

Quantifying inputs and outputs

- Grass samples: daily at 09:00
- Manure samples: twice a day after milking
- Milk samples: 4 consecutive milkings

Results NUE_N: SG vs CCG

SG: 4.2 kg DM cow⁻¹ day⁻¹ CCG: 3.6 kg DM cow⁻¹ day⁻¹

Fresh grass

July: SG < CCG (37% vs 39%; P=0.003)</p>

• due to higher grass (N) intake

Sept.: No difference SG and CCG (P=0.723)
due to lower grass RDP content

Results NUE_N : high vs low RDP

High RDP < low RDP (35% vs 41%; P<0.001)</p>

- due to higher concentrate N intake
- despite higher milk output: 30 vs 26 kg cow⁻¹ day⁻¹

Results N digestibility

Low N digestibility

Absolute RDP levels

- Low RDP was very low (-300)
- High RDP was 'normal' (+200)

Shortage N on rumen level

- Low NH₃ in rumen: <3 mmol/L
- Low milk urea: 10 mg/dl
- \rightarrow N digestibility grass?

Conclusions

SG slightly higher grass intake compared to CCG

• Grass N digestibility?

Increase in feed N

- Increase in urine N
- Increase in N digestibility
- Decrease in NUE_N

• High faeces N; low urine N \rightarrow environmental impact

To be continued..

Further analyses

- Tested with higher N level in 2017
- NUE_N at farm level

Amazing Grazing!!!

Amazing Grazing is realised in cooperation with:

N inputs / outputs / efficiency parameters

		Т	reatment	groups		GS	RDP	GS*RDP
	Р	CCG-H	CCG-L	SG-H	SG-L	Р	Р	Р
Total feed in kg DM cow ⁻¹ day ⁻¹	J	19.3	18.3	18.8	18.1	0.249	0.01	0.678
	S	18.9	18.0	18.9	17.5	0.579	0.006	0.518
Total feed N in g cow ⁻¹ day ⁻¹	J	472	354	480	375	0.071	<0.001	0.424
	S	447	360	454	351	0.924	< 0.001	0.419
Grass in kg DM cow ⁻¹ day ⁻¹	J	4.1	4.2	4.6	4.9	0.014	0.477	0.559
	S	2.8	3.4	3.6	3.8	0.033	0.159	0.547
Grass N in g cow ⁻¹ day ⁻¹	J	140	132	161	166	0.002	0.881	0.44
	S	113	139	128	141	0.395	0.058	0.502
Milk in kg cow ⁻¹ day ⁻¹	J	30.8	25.8	31.0	25.9	0.834	<0.001	0.937
	S	28.9	25.2	29.4	25.5	0.619	< 0.001	0.903
Milk N in g cow ⁻¹ day ⁻¹	J	170	148	166	144	0.255	<0.001	0.986
	S	150	144	153	142	0.921	0.081	0.618
Faecal N in g cow ⁻¹ day ⁻¹	J	162	152	146	140	< 0.001	0.023	0.481
	S	136	148	146	131	0.67	0.811	0.054
Urine N in g cow ⁻¹ day ⁻¹	J	140	54	168	91	< 0.001	<0.001	0.541
	S	159	68	155	78	0.758	< 0.001	0.484
NUE _N in %	J	36	42	34	39	0.003	<0.001	0.24
	S	34	40	34	41	0.723	< 0.001	0.817
N digestibility ⁶ in %	J	66	57	70	63	< 0.001	<0.001	0.281
	S	69	58	68	63	0.463	< 0.001	0.179

Compared to an efficient Dutch cow

	Jan Dijkstra, 2013		
	Efficient cow	Low RDP	High RDP
N feed	461	360	463
N faeces	89	143	148
N urine	174	73	156
N milk	198	144	159
NUE _N %	43	40	34
N digestibility %	81	61	68

Low N feed input

• High average NUE_N : 37% • Low average digestibility: 64%

- High N faeces
- Low N urine

