Can we motivate dairy cows to increase their grass intake by feeding low protein supplements?

June 2018, R.L.G. Zom, I.A.J. Van Berkel, M.D. Oegema, G. Holshof



Components of Amazing Grazing

Introduction

- Animals seems to balance/optimise their nutrient intake
 - Free choice: Dairy cows avoid excess/shortage of Rumen Degradable Protein (RDP) (e.g. Tolkamp et al. 1998)
 - Lams select forages to correct nutritional
 - imbalances (Scott & Provenza, 2000)
 - Grazing dairy cows supplemented with low protein concentrates selected for high protein herbage (Heublein et al. 2017)

- Can we use this this mechanism?
 - Can we motivate dairy cows to increase their grass intake by feeding low protein supplements?
- High grazing intake
 - Increased farm profitability (van den Pol – van Dasselaar et al. 2013)
 - Increased utilisation of home grown forage

- Do dairy cows optimise the protein in their diet?
 - What will happen if we challenge cows with a temporary shortage of nitrogen in the rumen?
 - Will cows compensate this with a higher grass intake?
 - Are there any trade-offs

Introduction

60% of Dutch dairy farms

- Part-time grazing with supplemental forage (maize silage) and concentrates indoors
 - Not enough grassland near the farm for full-time grazing
 - Promote cow traffic in AMS+grazing systems
 - Increase dry matter intake
- Ideal if the proposed concept will work
 - Feeding indoors with low protein supplements

Materials & Methods

60 HF Cows (40 multiparous)

- 53 ± 25 DIM, 2.5 ± 1.5 lactations
- MY 38.4 ± 7.5 kg/d, Fat 1608 ± 368 g/d, Protein 1206 ± 206 g/d
- 2 ×2 Factorial design
 - 2 Grazing Systems
 - 2 Levels of Rumen Degradable Protein Balance
 - 3 Grass intake measurement periods (Ju, Jl and Sp)
 - Maize silage Fixed amounts within grazing system
 - Weekly adjusted to the available herbage

Materials & Methods

2 Contrasting grazing systems

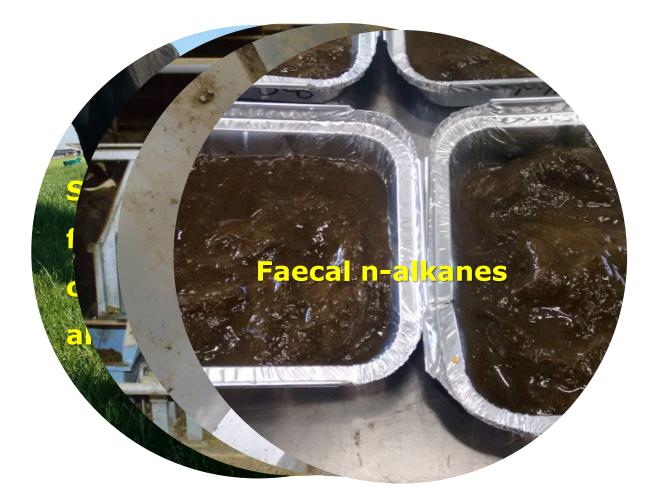
- SG: Strip Grazing (de Geus, 1946)
- CCG: Compartmented Continuous Grazing (Holshof et al. 2018)
- Major systems in the Netherlands

Material & Methods

2 Contrasting levels of rumen degradable protein

• LP: Low RDP; HP: High RDP 5.5 kg DM/d

	LP	HP	
Citrus pulp	19	19	%
Corn	38	38	%
Rapeseed meal		30	%
Rapeseed meal Rumen Bypass	8		
Sugar beet pulp	25	3	%
Sugar beet molasses	7	5	%
Palm oil	2	2	%
Crude Protein	110	220	g/kg DM
Intestinal Degradable protein (DVE)	117	117	g/kg DM
RDP balance (OEB)	-57	54	g/kg DM
NEL	7.8	7.8	MJ/kg DM



Results Intake

Grazing syster	n	CCG		SG						
RDP treatment		HP	LP	HP	LP	lsd	GS	RDP	GS×RDP	P×GS×RDP
GDMI	Ju	7.0	6.5	5.5	6.0	0.7	0.654	0.508	0.437	< 0.001
(g.d ⁻¹)	JI	4.1	4.1	4.6	4.9					
	Sp	2.9	3.3	3.5	3.8					

Results Intake

Grazing system	_	CCG		SG						
RDP treatment		HP	LP	HP	LP	lsd	GS	RDP	GS×RDP	P×GS×RDP
GDMI	Ju	7.0	6.5	5.5	6.0	0.7	0.654	0.508	0.437	<0.001
(g.d⁻¹)	JI	4.1	4.1	4.6	4.9					
	Sp	2.9	3.3	3.5	3.8					
TDMI	Ju	19.9	19.0	19.5	18.8	1.1	0.015	<0.001	0.945	0.555
(kg.d⁻¹)	JI	19.4	18.6	20.5	18.3					
	Sp	18.3	18.0	18.9	17.5					
NEL	Ju	151	141	142	135	7.1	0.042	0.002	0.226	0.132
(MJ.d⁻¹)	JI	134	128	132	127					
	Sp	133	127	133	124					
DVE	Ju	1782	1599	1648	1566	78	0.164	< 0.001	0.451	0.136
(g.d ⁻¹)	JI	1606	1513	1614	1550					
	Sp	1550	1505	1565	1486					
OEB	Ju	308	-419	213	-363	58	0.348	< 0.001	< 0.001	0.002
(g.d ⁻¹)	JI	233	-379	312	-274					
	Sp	194	-300	209	-311					

Results Milk constituents yields

Grazing system		CCG		SG		_				
RDP treatment		HP	LP	HP	LP	lsd	GS	RDP	GS×RDP	P×GS×RDP
Milk yield	Ju	34.3	29.6	33.	6 28.4	2.5	0.740	< 0.001	0.888	0.953
(kg.d ⁻¹)	JI	30.7	25.7	30.	9 25.8					
	Sp	29.0	25.0	29.	3 25.4					
Fat	Ju	1.28	1.16	1.2	2 1.11	0.1	0.440	< 0.001	0.675	0.599
$(kg.d^{-1})$	JI	1.12	1.05	1.0°	9 1.01					
	Sp	0.89	0.98	0.9	3 0.96					
Protein	Ju	1.19	1.04	1.1^{-1}	4 0.98	0.1	0.269	< 0.001	0.226	0.826
(kg.d⁻¹)	JI	1.08	0.94	1.0	5 0.91					
	Sp	0.96	0.91	0.9	7 0.90					
Urea	Ju	12	7		95	2.5	0.122	< 0.001	0.698	0.698
(mg.100 ml⁻¹)	JI	13	8	1	4 10					
	Sp	11	8	1	1 6					

Discussion

- Feeding a low protein supplement:
 - Did not motivate cows to increase grazing intake
 - Cows reduced the intake of (low protein) maize silage
 - So, cows seem to balance their nutrient intake
 - Effect of rumen function (N shortage for rumen microbes)?
 - Metabolic regulation?
 - Reduced Intake -> Reduced Milk performance
 - Milk and milk protein yields were reduced

Discussion

- Feeding a low protein supplement:
 - Other observations:
 - Rumen NH_3 and milk urea were very low in both LP and HP
 - Rumen NH_{3 :}
 - 2.63, 2.15 mmol/L for HP-CCG and HP-SG
 - 1.84 and 1.35 mmol/L for LP-CCG and LP-SG
 - 3 mmol/L minimum threshold for good rumen function
 - This does not match with the calculated DVE and OEB values
 - Should we reconsider protein digestibility of grass?

Conclusion

Q: Can we motivate dairy cows to increase their grass intake by feeding low protein supplements?

A:

But we did see some things that need further research

Acknowedledsments

- The staff and management of Dairy Campus
- The Msc students
 - Bob van Helvoort, Juan Ignacio Artavia Mora, Hilleke Ketelaars, Natasha Jaques, Inke van Berkel, Maike Oegema
- Colleagues
- Sponsors

Amazing Grazing!!!

Amazing Grazing is realised in cooperation with:

